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We study an ad hoc extension of the lattice Boltzmann method that allows the simulation of non-Newtonian
fluids described by generalized Newtonian models. We extensively test the accuracy of the method for the case
of shear-thinning and shear-thickening truncated power-law fluids in the parallel plate geometry, and show that
the relative error compared to analytical solutions decays approximately linear with the lattice resolution.
Finally, we also tested the method in the reentrant-flow geometry, in which the shear rate is no longer a scalar
and the presence of two singular points requires high accuracy in order to obtain satisfactory resolution in the
local stress near these points. In this geometry, we also found excellent agreement with the solutions obtained
by standard finite-element methods, and the agreement improves with higher lattice resolution.
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I. INTRODUCTION

Since its origin, more than 15 years ago, the lattice Bolt-
zmann method �LBM� has proved to be a powerful numeri-
cal technique for the simulation of single- and multiphase
fluid flows in complex geometries. In fact, the LBM has been
successfully applied to different problems in fluid dynamics
and the interest in the method has grown rapidly in recent
years. The LBM is particularly suited for complex geom-
etries and interfacial dynamics, and its initial applications
included transport in porous media and multiphase and mul-
ticomponent fluid flows �1�. It was then adapted by Ladd and
others to simulate particle-fluid suspensions �2�. It has also
been applied to high Reynolds number incompressible flows
and turbulence, and the implementation of thermal and com-
pressible schemes is being actively pursued �3�. Viscoelastic
fluids, for various constitutive models, have also been suc-
cessfully modeled with the LBM �4,5�. One advantage of the
LBM is that data communications between nodes is always
local, which makes the method extremely efficient for large-
scale, massively parallel computations �see Ref. �6� for an
interesting discussion on the LBM capabilities compared to
the existing continuum-based computational fluid dynamics
methods�. Another property of the LBM that has lately at-
tracted considerable attention is the microscopic origin of its
mesoscopic kinetic equations, which could therefore readily
incorporate molecular level interactions. This makes the
LBM very compelling for microscale fluid dynamics in mi-
crofluidic devices �7� which typically present noncontinuum
and surface-dominated effects �e.g., high Knudsen number
conditions, electrokinetic and wetting phenomena�. This

microscopic-based approach also makes the LBM a good
candidate for hybrid, multiscale simulations of fluid flows.

However, the extension of the LBM to �inelastic� non-
Newtonian fluids has received limited attention so far, in
spite of the fact that a reliable LBM for this type of non-
Newtonian flow would be very valuable; for instance, in
studies of transport in geological porous media, an area in
which the LBM has been extensively applied �8–10� due to
its simple implementation in complex geometries. In addi-
tion to geological systems, the flow of non-Newtonian fluids
is commonly found in many areas of science and technology.

In this work, we study an ad hoc modification of the
LBM, first introduced by Aharonov and Rothman �11�, in
which the local value of the viscosity depends on the strain-
rate tensor. We show that this modification to the LBM ac-
curately describes the flow of truncated power-law fluids,
both shear thinning and shear thickening, not only in unidi-
rectional flows �parallel plates geometry� but also in two-
dimensional flows with simultaneous shear components in
more than one direction �reentrant corner geometry�.

II. LATTICE BOLTZMANN METHOD

The LBM can be viewed as an implementation of the
Boltzmann equation on a discrete lattice and for a discrete set
of velocity distribution functions �12�,

f i�x + ei�x,t + �t� = f i�x,t� + �i„f�x,t�… , �1�

where f i is the particle velocity distribution function along
the ith direction, �i(f�x , t�) is the collision operator which
takes into account the rate of change in the distribution func-
tion due to collisions, and �x and �t are the space and time
step discretizations, respectively �1�. Then, the density � and
momentum density �u are given by the first two moments of
the distribution functions,
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� = �
i

f i, �u = �
i

f iei, �2�

where we assumed that the discretization is consistent with
the Boltzmann equation, x+ei corresponding to the nearest
neighbors of the point x. Note that in the previous equation,
and in the remainder of the article, all quantities are rendered
dimensionless using �x and �t as the characteristic space
and time scales, respectively. Also note that, as we are con-
cerned with incompressible flows, we do not need to intro-
duce a dimension of mass.

A. Bhatnagar-Gross-Krook approximation

Assuming that the system is close to equilibrium the col-
lision operator is typically linearized about a local equilib-
rium distribution function f i

eq, and assuming further that the
local particle distribution relaxes to equilibrium with a single
characteristic �relaxation� time �, we arrive at the Bhatnagar,
Gross, and Krook approximation of the LBM �1�,

f i�x + ei�x,t + �t� = f i�x,t� +
f i�x,t� − f i

eq�x,t�
�

, �3�

where the relaxation time � is directly related to the kine-
matic viscosity of the fluid �= �2�−1� /6.

B. Non-Newtonian flows

The ad hoc extension of the LBM proposed by Aharonov
and Rothman �11� to simulate non-Newtonian fluids consists
of determining the value of the relaxation time � locally, in
such a way that the desired local value of the viscosity is
recovered. The viscosity is related to the local rate of strain
through the constitutive equation for the stress tensor. A com-
monly used model of �inelastic� non-Newtonian fluids is the
generalized Newtonian model, in which the relation between
the stress tensor �ij and the rate-of-strain tensor Dij is similar
to that for Newtonian fluids, �ij =2�Dij, but with � a func-
tion of the invariants of the local rate-of-strain tensor, �
=��Dij�. In particular, we are interested in the widely used
power-law model �13� �=m	̇n−1, where n
0 is a constant
characterizing the fluid. The case n�1 corresponds to shear-
thinning �pseudoplastic� fluids, whereas n
1 corresponds to
shear-thickening �dilatant� fluids, and n=1 recovers the
Newtonian behavior. The magnitude of the local shear rate 	̇
is related to the second invariant of the rate-of-strain tensor,
	̇=�DijDij, where the components of the rate-of-strain tensor
Dij are computed locally from the velocity field. In particu-
lar, after obtaining the instantaneous velocity field from the
LBM we then compute Dij from a first-order finite-difference
approximation to the local derivatives of the velocity.

However, there is an obvious obstacle to a direct imple-
mentation of the power-law fluid in the LBM, in that the
effective viscosity diverges for zero shear rates �	̇=0� in a
shear-thinning fluid �n�1�. Analogously, the viscosity be-
comes zero for a shear-thickening fluid at zero shear rates. In
previous studies it is not clear how this problem was
avoided.

Clearly, both limits are unphysical and, in fact, it is known
that many non-Newtonian fluids exhibit a power-law behav-

ior only in some range of shear rates, and a constant viscos-
ity is observed outside that range �13�. Here, we used the
simplest model of such fluids: the truncated power-law
model,

��	̇� = ��	̇�/� = �m	̇0
�n−1�, 	̇ � 	̇0,

m	̇�n−1�, 	̇0 � 	̇ � 	̇�,

m	̇�
�n−1�, 	̇ 
 	̇�.

� �4�

Using the truncated power-law model has an additional
advantage in the LBM. It is well known that the LBM can
accurately simulate viscous flows only in a limited range of
kinematic viscosities. The method becomes unstable for re-
laxation times close to �1/2 �14� �small kinematic viscosi-
ties, ��0.001� and its accuracy is very poor for �1 �15�
�relatively large kinematic viscosities, �1/6�. Therefore,
we set the lower and upper saturation values of the kinematic
viscosity in Eq. �4� to �min=0.001 and �max=0.1. It is clear
that the maximum value of the viscosity corresponds to the
value at zero shear rate for shear-thinning fluids �n�1�,
whereas the opposite is true for shear-thickening materials
�n
1�. Note that setting the value of the maximum model
viscosity to �max=0.1 for a given maximum fluid viscosity
�max

* and a spatial resolution �x simply corresponds to
choosing a particular value of the time step in order to satisfy
�max

* =�max��x2 /�t� �6�. Since the kinematic viscosity scales
with �x2 /�t, to keep the dimensionless viscosity constant as
we increase the number of lattice nodes N, we shall rescale
�t according to the previous relationship, that is, since �x
�1/N then �t�1/N2. In what follow we use the three-
dimensional face-centered-hypercubic projection model of
the LBM with 19 velocities �D3Q19 following the notation
in Ref. �16��.

III. FLOW BETWEEN PARALLEL PLATES

We first test the proposed LBM for non-Newtonian flows
in a simple unidirectional flow, the flow between two parallel
plates separated a distance b in the z direction �Hele-Shaw
cell� in the presence of a pressure gradient in the x direction.
We use periodic boundary conditions in both x and y direc-
tions. The resulting flow field is unidirectional, with vx�z� the
only nonzero velocity component, the rate of strain is a sca-
lar function of the local velocity, 	̇= 	dvx /dz	, and the Navier-
Stokes equations are greatly simplified �17�.

In order to compute the exact solution to the Navier-
Stokes equations for a pressure driven flow of a truncated
power-law fluid in the Hele-Shaw geometry we split the sys-
tem into �in principle� three different regions. We shall de-
scribe the solutions obtained in the regions between z=0 and
b /2 and the analogous solutions for z
b /2 follow by sym-
metry. The first region we consider is the high shear-rate
region close to the walls, region H for z�zh, in which the
shear rate exceeds 	̇�, and the fluid is Newtonian with effec-
tive kinematic viscosity ��=m	̇�

�n−1�; the second one is the
intermediate region in which the fluid behaves as a power

GABBANELLI, DRAZER, AND KOPLIK PHYSICAL REVIEW E 72, 046312 �2005�

046312-2



law according to Eq. �4�, region I for zh�z�zl; and the last
one is the low shear-rate region close to the center of the
channel, region L for zl�z�b /2, in which the shear rate is
lower than 	̇0 and the fluid is again Newtonian, but with

kinematic viscosity �0=m	̇0
�n−1�. Matching then the solution

obtained in each region with the conditions of continuity in
the velocity and the stress, we obtain the general solution to
the problem, in terms of the pressure gradient G�=−�P,

vx�z� =�

G

2��
�z�b − z� , 0 � z � zh,

n

n + 1

G

m
�1/n�
b

2
��n+1�/n

− 
b

2
− z��n+1�/n + �1 zh � z � zl,


 G

2�0
�z�b − z� + �2 zl � z � b/2,

� �5�

with the constants �1 and �2 given by

�1 = 
 G

2��
�zh�b − zh� −

n

n + 1

G

m
�1/n

��
b

2
��n+1�/n

− 
b

2
− zh��n+1�/n ,

�2 =
n

n + 1

G

m
�1/n�
b

2
��n+1�/n

− 
b

2
− zl��n+1�/n

− 
 G

2�0
�zl�b − zl� + �1, �6�

and the transition points zh and zl,

zh =
b

2
− 
 ��

m1/n�n/�n−1� 1

G
=

b

2
−

m	̇�
n

G
,

zl =
b

2
− 
 �0

m1/n�n/�n−1� 1

G
=

b

2
−

m	̇0
n

G
. �7�

Clearly, the number of regions that coexist will depend on
the magnitude of the imposed pressure gradient G. For very
small pressure gradients G�1, both zh and zl become nega-
tive �see the previous equation�, which means that shear rates
are smaller than 	̇0 across the entire gap and only region L
exists. As G increases, there is a range of pressure gradients
m	̇0

n� �b /2�G�m	̇�
n for which zl
0 but zh�0, and there-

fore regions L and I coexist. Finally, for G
 �2/b�m	̇�
n we

obtain zh
0, and all three regions are present in the flow.
Note that for large values of G both transition points con-
verge to the center of the cell, zl, zh→b /2. Thus, Eq. �7�
allows us to choose the appropriate value of G in order to
investigate the different regimes.

We performed a large number of simulations for different
values of the power-law exponent n. Specifically, we con-
sider two shear-thinning fluids, n=0.50 and 0.75, and two
shear-thickening fluids, n=1.25 and 2.00. In all cases we
performed simulations for two different magnitudes of the
external forcing: one for which the region of low shear rates

L is important, that is, relatively small pressure gradients for
which zl�b /4; and a second one in which the fluid behaves
as a power-law fluid almost in the entire gap, that is, zl
�b /2. In both cases the shear rate does not exceed 	̇�. In
Fig. 1 we present a comparison between the lattice Boltz-
mann results and the analytical solution given in Eq. �5� for
a shear-thinning fluid with power-law exponent n=0.50. The
simulation corresponds to a relatively small pressure gradient
for which the region of small shear-rates is large, zl�b /4.
Both regions, region L in which the fluid behaves as a New-
tonian one, and region I in which the effective viscosity is a
power law, are shown. The agreement with the analytical
solution is excellent, with relative error close to 0.1%. In Fig.
2 we present a similar comparison between the LBM and the
analytical solution, but for a shear-thickening fluid �n
=2.00� which behaves as a power-law fluid across almost the
entire channel. Again the agreement is excellent with relative
error smaller than 0.1%.

Finally, for each of these cases we run a series of simula-
tions in which the number of lattice nodes in the direction of
the gap, N, was increased from 10 to 400, and computed the
relative error of the LBM results compared to the analytical
solutions, defined as �i=1

N �1−vi
LBM /vi

anal�2. In order to obtain
the accuracy of the LBM as a function of the number of
nodes, we simulated the same physical problem but changed
�x from 1 to 0.025. In addition, since the accuracy of the
LBM depends on the model viscosity, we also changed �t
according to �t=�x2, so that the model viscosity remains the
same, independent of the number of nodes. Then, in order to
compare the velocity field always at the same physical time
since startup, the number of time steps was increased in-
versely proportional to �t �reaching �108 time steps for N
=400�. In Fig. 3 we present the results obtained for the dif-
ferent fluids and different pressure gradients. It is clear that,
in all cases, the relative error decreases, approximately as
1/N, as the number of nodes is increased, and eventually
becomes of the order of 0.1% �an arbitrary target accuracy
that we set for our simulations�. The error was found to be
independent of the pressure gradient, or the size of the non-
Newtonian region I, but strongly depends on the power-law
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exponent. In particular, the relative error seems to increase as
the magnitude of �1−n� /n increases, with the error in the
Newtonian case �n=1� decaying faster than 1/N. This is
probably related to the first-order finite-difference approxi-
mation used to compute the spatial derivatives of the fluid
velocity which determine the local viscosity through Eq. �4�.
It would then be possible to improve the accuracy of the
method by implementing a higher order approximation of the
local shear-rates. Another possibility would be to use the
constitutive equation �Eq. �4�� to obtain the local value of the
viscosity in terms of the stress tensor, which, in turn, can be
computed directly from the particle velocity distribution
functions, f i �1,3�. This latter approach has the advantage that
it avoids computing the local derivatives of the velocity field.

IV. REENTRANT CORNER FLOW

In the previous section we tested the LBM for non-
Newtonian fluids in a Hele-Shaw geometry and found excel-
lent agreement with the analytical solutions as the number of
nodes was increased. In that case, the flow is unidirectional
and therefore the shear-rate is a scalar, which is a rather
simple type of flow. In contrast, we shall now test the LBM
in a more demanding geometry, that is, the reentrant corner
geometry sketched in Fig. 4. In this case, the shear rate is no
longer a scalar as in the Hele-Shaw geometry and, in addi-
tion, the presence of two singular points, located at the en-
trant and reentrant corners �see Fig. 4�, requires high accu-
racy in order to obtain satisfactory stress resolution near

FIG. 1. �Color online� Com-
parison between a lattice Boltz-
mann simulation and the analyti-
cal solution for the flow between
two parallel plates separated a dis-
tance b=10. The power-law expo-
nent of the fluid is n=0.50 �shear
thinning�. The pressure gradient is
�P=6�10−6, �=1, �0=0.1, ��

=0.001, m=10−3, and N=400.
The circles correspond to the lat-
tice Boltzmann simulations. The
solid line corresponds to the ana-
lytical solution given by Eq. �5�.
Also shown, in dashed lines, are
the continuations of the Newton-
ian and power-law solutions out-
side their regions of applicability.
The vertical, dashed lines corre-
spond to the transition points, zl

and z̃l=b−zl, between the low
shear-rate region L, and the region
of intermediate shear rates, I.

FIG. 2. �Color online� Com-
parison between a lattice Boltz-
mann simulation and the analyti-
cal solution for the flow between
two parallel plates separated a dis-
tance b=10. The power-law expo-
nent of the fluid is n=2.00 �shear
thickening�. The pressure gradient
is �P=5�10−6, �=1, �0=0.001,
��=0.1, m=10−3, and N=400.
The circles correspond to the lat-
tice Boltzmann simulations and
the solid line corresponds to the
analytical solution given by Eq.
�5�. The vertical dashed lines cor-
respond to the transition points zl

and z̃l=b−zl, between the low
shear-rate region L and the inter-
mediate shear-rate region I.
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these points �although no analog to Moffatt’s analysis is
available for non-Newtonian fluids near wedges and corners,
it is believed that nonintegrable stress singularities develop
in this case, and numerical techniques do not always con-

verge �18��. Motivated by these issues we simulated the flow
in the reentrant corner geometry using the LBM for a shear-
thinning fluid with power-law exponent n=0.50. In Fig. 4 we
present the streamlines corresponding to the computed veloc-

FIG. 3. �Color online� Relative
error of the LBM compared to the
analytical solution for the flow be-
tween parallel plates, as a function
of the number of lattice points
used in the simulations. The
points correspond to simulations
with the LBM for four different
fluids, two shear-thinning fluids
�n=0.50 and 0.75� and two shear-
thickening fluids �n=1.25 and
2.00�. For all fluids we also
present results corresponding to
two different regimes: one at high
pressure gradients, in which the
low shear-rate region, region L, is
small �power law�, and the other
one at intermediate pressure gradi-
ents in which both regions L and I
are comparable �note that with the
exception of n=0.75 both regimes
give almost exactly the same rela-
tive error and, in fact, the corre-
sponding points overlap almost
entirely�. In all cases, we in-
creased the lattice resolution until
the relative error was on the order
of 0.1%. The solid line shows the
general trend of the data, 1 /N.

FIG. 4. �Color online� Stream-
lines in the reentrant flow geom-
etry. The flow direction is shown
at the center of the channel. Note
the asymmetry due to inertia ef-
fects. The dashed lines show the
lines in which we compare the so-
lutions of the LBM method with
the solutions obtained by finite-
element calculations.
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ity field, obtained for a pressure gradient �P=10−5, where
the recirculation region inside the cavity can be observed
�note that the separation between streamlines was chosen for
visualization purposes only and it is not related to the local
flow rate, since the magnitude of the fluid velocity sharply
decays inside the cavity�. The corresponding Reynolds num-
ber is Re=4, computed with the maximum viscosity �0, and
the measured mean velocity. In fact, the streamlines shown
in Fig. 4 are fore-aft asymmetric, due to inertia effects,
which are absent in low Reynolds-number flows. We also
computed the local magnitude of the shear rate, related to the
local stress field through the constitutive relation given by
Eq. �4�. In Fig. 5 we present a contour plot of the magnitude
of the shear rate in the reentrant corner geometry with the

lowest level in the contour plot corresponding to 	̇0. It can be
seen that the fluid is Newtonian in small regions at the center
of the channel and inside the recirculation region. It is also
clear that, as discussed before, both the entrant and reentrant
corners are singular points where the shear rate increases to
its highest values in the system.

Finally, in order to perform a more quantitative test of the
LBM, we solved the problem numerically using the finite-
element commercial software FIDAP �Fluent Inc.�. In Figs. 6
and 7 we compare the solutions obtained with the LBM for
different resolutions, ranging from N=40�40 to N=320
�320, with the finite-element results obtained with FIDAP.
The comparison is made along two lines, one oriented along
the flow direction �dashed line at Y =16 in Fig. 4� and a
second one oriented in the perpendicular direction �dashed
line at X=20 in Fig. 4�. In Fig. 6 we compare the velocity
along the channel, ux, in the line perpendicular to x that is
located at the center of the system �X=20, see Fig. 4�. A
velocity profile similar to that in a Hele-Shaw cell is ob-
served for 0�y�20, as well as the recirculation flow inside
the cavity �see the inset�. In Fig. 7 we plot the velocity in the
vertical direction, uy, along a horizontal line close to the
upper wall of the channel �Y =16, see Fig. 4�. It is clear that
there is some fluid penetration into the cavity �entrant flow�
in the first half of the channel and some reentrant flow in the
second half �note that, as mentioned before, the flow is not
symmetric about x=20 due to inertia effects�. In both cases
we found an excellent agreement between the two methods,
and the agreement clearly improved as the number of lattice
nodes was increased in the LBM �the number of elements in
the finite-element computations was fixed to 100�100�.

V. CONCLUSIONS

We have extensively tested an ad hoc modification of the
lattice Boltzmann method that extends its use to generalized
Newtonian fluids, in which the non-Newtonian character of
the fluids is modeled as an effective viscosity. Specifically,

FIG. 5. Contour plot of the local magnitude of the shear rate, as
computed with the LBM. The lowest level of the plot corresponds
to 	̇0, that is, the fluid behaves as Newtonian in those regions. High
shear rates, and accordingly high shear stresses, are localized at the
entrant and reentrant corners.

FIG. 6. �Color online� Velocity
component along the channel, ux,
plotted in a line perpendicular to
the flow �dashed line X=20 in Fig.
4�. We compare the results of the
finite-element calculations �solid
line� with the results of the LBM
�points� for different lattice reso-
lutions. In the inset we plot the ve-
locity profile inside the recircula-
tion region.
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we calculated the accuracy of the method for truncated
power-law fluids and showed that the relative error decays
�linearly� as the resolution of the lattice �number of lattice
points� is increased. The error was computed directly from
the analytical solutions of the problem. The same trend was
observed for both shear-thinning �n�1� and shear-
thickening �n
1� fluids, as well as for intermediate and high
shear rates. In all cases the relative error was of the order of
0.1% for the highest resolution employed. Finally, we also
tested the method in the reentrant flow geometry and showed
that it is in excellent agreement with the solution obtained by
means of finite-element calculations. Again, the accuracy of

the method was shown to increase with the number of lattice
points.
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FIG. 7. �Color online� Velocity
component perpendicular to the
flow direction, uy, plotted in a line
parallel to the flow and close to
the top wall of the channel
�dashed line Y =16 in Fig. 4�. We
compare the results of the finite-
element calculations �solid line�
with the results of the LBM
�points� for different lattice
resolutions.
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